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PREDICTIVE TOUCH SURFACE SCANNING

RELATED APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 13/591,145, filed Aug. 21, 2012, which claims
priority to U.S. Provisional Patent Application No. 61/557,
148, filed on Nov. 8,201 1, and which is a continuation-in-part
of U.S. patent application Ser. No. 13/250,379, filed on Sep.
30,2011, which is a continuation-in-part of U.S. patent appli-
cation Ser. No. 12/844,798, filed on Jul. 27, 2010, which
claims priority to U.S. Provisional Application No. 61/229,
236, filed on Jul. 28, 2009, all of which are incorporated by
reference herein in their entirety.

TECHNICAL FIELD

This disclosure relates to the field of touch-sensors and, in
particular, to performing measurement scans of capacitive
touch-sensor arrays.

BACKGROUND

Computing devices, such as notebook computers, personal
data assistants (PDAs), kiosks, and mobile handsets, have
user interface devices, which are also known as human inter-
face devices (HID). One user interface device that has
become more common is a touch-sensor pad (also commonly
referred to as a touchpad). A basic notebook computer touch-
sensor pad emulates the function of a personal computer (PC)
mouse. A touch-sensor pad is typically embedded into a PC
notebook for built-in portability. A touch-sensor pad repli-
cates X/Y movement using a collection of capacitive sensor
electrodes, arranged along two defined axes, that detect the
presence or proximity of one or more conductive objects,
such as a finger. Mouse right/left button clicks can be repli-
cated by two mechanical or capacitive-sensed buttons,
located in the vicinity of the touchpad, or by tapping com-
mands or other gestures on the touch-sensor pad itself. The
touch-sensor pad provides a user interface device for per-
forming such functions as positioning a pointer, or selecting
an item on a display. These touch-sensor pads may include
multi-dimensional sensor arrays for determining movement
of the conductive object in multiple axes. The sensor array
may include a one-dimensional sensor array, detecting move-
ment in one axis. The sensor array may also be two dimen-
sional, detecting movements in two axes.

Another user interface device that has become more com-
mon is a touch screen. Touch screens, also known as touch-
screens, touch windows, touch panels, or touchscreen panels,
are transparent display overlays which are typically either
pressure-sensitive (resistive or piezoelectric), electrically-
sensitive (capacitive), acoustically-sensitive (surface acous-
tic wave (SAW)), or photo-sensitive (infra-red). Such over-
lays allow a display to be used as an input device, removing
the keyboard and/or the mouse as the primary input device for
interacting with the displayed image’s content. Such displays
can be attached to computers or, as terminals, to networks.
Touch screens have become familiar in retail settings, on
point-of-sale systems, on ATMs, on mobile handsets, on
kiosks, on game consoles, and on PDAs where a stylus is
sometimes used to manipulate the graphical user interface
(GUI) and to enter data. A user can touch a touch screen or a
touch-sensor pad to manipulate data. For example, a user can
apply a single touch, by using a finger to touch the surface of
a touch screen, to select an item from a menu.
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2
BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure is illustrated by way of example,
and not by way of limitation, in the figures of the accompa-
nying drawings.

FIG. 1 is a block diagram illustrating an embodiment of an
electronic system that processes touch sensor data.

FIG. 2 is a block diagram illustrating an embodiment of an
electronic system that processes touch sensor data.

FIG. 3 illustrates an embodiment of a capacitive sensor
array having a diamond pattern.

FIG. 4 illustrates unit cells and self-capacitance profiles of
atouch proximate to a capacitive sensor array, according to an
embodiment.

FIG. 5 illustrates an area of a touch-sensing surface,
according to an embodiment.

FIG. 6A illustrates a search window of a touch-sensing
surface, according to an embodiment.

FIG. 6B illustrates a touch-sensing surface, according to an
embodiment.

FIG. 6C illustrates a touch-sensing surface, according to an
embodiment.

FIG. 7 is flow diagram illustrating a process for scanning a
capacitive touch sensor array, according to an embodiment.

DETAILED DESCRIPTION

The following description sets forth numerous specific
details such as examples of specific systems, components,
methods, and so forth, in order to provide a good understand-
ing of several embodiments of the present invention. It will be
apparent to one skilled in the art, however, that at least some
embodiments of the present invention may be practiced with-
out these specific details. In other instances, well-known
components or methods are not described in detail or are
presented in a simple block diagram format in order to avoid
unnecessarily obscuring the present invention. Thus, the spe-
cific details set forth are merely exemplary. Particular imple-
mentations may vary from these exemplary details and still be
contemplated to be within the spirit and scope of the present
invention.

In one embodiment, a capacitive touch-sensing surface
may be used to track locations of one or more conductive
objects in contact or in close proximity to the touch-sensing
surface by scanning each of a number of intersections
between capacitive sensor electrodes. In one embodiment, a
touch may be detected at the touch-sensing surface when a
conductive object, such as a finger, contacts or is in close
proximity to the touch-sensing surface. An intersection
between two sensor electrodes may be understood as a loca-
tion at which one sensor electrode crosses over or overlaps
another, while maintaining galvanic isolation from each
other. A scan may include a series of mutual capacitance
measurements between pairs of intersecting sensor electrodes
spanning all or a portion of the touch-sensing surface. An
embodiment of scanning of such a capacitive touch-sensing
surface within a touch-sensing device may decrease power
consumption and increase noise immunity by limiting the
number of intersections scanned for identifying a location of
the one or more conductive objects. In one embodiment,
limiting the number of scanned intersections may further
increase accuracy, reduce response time, and improve refresh
rate of the touch-sensing device.

In one embodiment, a processing device may perform a
first scan of the touch-sensing surface to detect and resolve
the location of a conductive object. Based on this resolved
(i.e., calculated) location, the processing device may predict a



US 9,417,728 B2

3

location or a set of possible future locations for the conductive
object. For example, the processing device may calculate a
predicted location of the conductive object based on the last
known or previously resolved locations, the velocity, the
acceleration, or a mix thereof of the conductive object. Alter-
natively, the processing device may determine a search win-
dow including all or most of the locations that the conductive
object is likely to be found during a subsequent scan. In one
embodiment, the prediction may also be based on the duration
between the first scan and the next subsequent scan. In one
embodiment, the search window may be rectangular. In an
alternative embodiment, the search window may be some
other non-square or non-rectangular shape.

Having determined a search window associated with the
predicted location of the conductive object, the processing
device may invoke a scan of intersections within the search
window, which may include intersections near the predicted
location. The conductive object can thus be tracked over time
by performing a series of local scans comprising the limited
number of intersections where the conductive object is likely
to be located. In the rare event that the location of the con-
ductive object cannot be accurately resolved using data from
a local scan, additional intersections, up to or including the
whole panel, may be sensed in order to determine the location
of the object.

FIG. 1 illustrates a block diagram of one embodiment of an
electronic system 100 including a processing device 110 that
may be configured to measure capacitances from a touch-
sensing surface 116 including a capacitive sensor array 121.
In one embodiment, a multiplexer circuit may be used to
connect a capacitive sensor 101 with a sensor array 121. The
electronic system 100 includes a touch-sensing surface 116
(e.g., atouchscreen, or a touch pad) coupled to the processing
device 110, which is coupled to a host 150. In one embodi-
ment the touch-sensing surface 116 is a two-dimensional
sensor array 121 that uses processing device 110 to detect
touches on the surface 116.

In one embodiment, the sensor array 121 includes sensor
electrodes 121(1)-121(N) (where N is a positive integer) that
are disposed as a two-dimensional matrix (also referred to as
an XY matrix). The sensor array 121 is coupled to pins 113
(1)-113(N) of the processing device 110 via one or more
analog buses 115 transporting multiple signals. In an alterna-
tive embodiment without an analog bus, each pin may instead
be connected either to a circuit that generates a TX signal or
to an individual RX sensor circuit.

In one embodiment, the capacitance sensor 101 may
include a relaxation oscillator or other means to convert a
capacitance into a measured value. The capacitance sensor
101 may also include a counter or timer to measure the oscil-
lator output. The processing device 110 may further include
software components to convert the count value (e.g., capaci-
tance value) into a touch detection decision (also referred to
as switch detection decision) or relative magnitude. It should
be noted that there are various known methods for measuring
capacitance, such as current versus voltage phase shift mea-
surement, resistor-capacitor charge timing, capacitive bridge
divider, charge transfer, successive approximation, sigma-
delta modulators, charge-accumulation circuits, field effect,
mutual capacitance, frequency shift, or other capacitance
measurement algorithms. It should be noted however, instead
of evaluating the raw counts relative to a threshold, the
capacitance sensor 101 may be evaluating other measure-
ments to determine the user interaction. For example, in the
capacitance sensor 101 having a sigma-delta modulator, the
capacitance sensor 101 is evaluating the ratio of pulse widths
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4

of'the output (i.e., density domain), instead of the raw counts
being over or under a certain threshold.

In one embodiment, the processing device 110 further
includes processing logic 102. Operations of the processing
logic 102 may be implemented in firmware; alternatively,
they may be implemented in hardware or software. The pro-
cessing logic 102 may receive signals from the capacitance
sensor 101, and determine the state of the sensor array 121,
such as whether an object (e.g., a finger) is detected on or in
proximity to the sensor array 121 (e.g., determining the pres-
ence of the object), resolve where the object is on the sensor
array (e.g., determining the location of the object), tracking
the motion of the object, or other information related to an
object detected at the touch sensor.

In another embodiment, instead of performing the opera-
tions of the processing logic 102 in the processing device 110,
the processing device 110 may send the raw data or partially-
processed data to the host 150. The host 150, as illustrated in
FIG. 1, may include decision logic 151 that performs some or
all of the operations of the processing logic 102. Operations
of the decision logic 151 may be implemented in firmware,
hardware, software, or a combination thereof. The host 150
may include a high-level Application Programming Interface
(API) in applications 152 that perform routines on the
received data, such as compensating for sensitivity differ-
ences, other compensation algorithms, baseline update rou-
tines, start-up and/or initialization routines, interpolation
operations, or scaling operations. The operations described
with respect to the processing logic 102 may be implemented
in the decision logic 151, the applications 152, or in other
hardware, software, and/or firmware external to the process-
ing device 110. In some other embodiments, the processing
device 110 is the host 150.

In another embodiment, the processing device 110 may
also include a non-sensing actions block 103. This block 103
may be used to process and/or receive/transmit data to and
from the host 150. For example, additional components may
be implemented to operate with the processing device 110
along with the sensor array 121 (e.g., keyboard, keypad,
mouse, trackball, LEDs, displays, or other peripheral
devices).

The processing device 110 may reside ona common carrier
substrate such as, for example, an integrated circuit (IC) die
substrate, or a multi-chip module substrate. Alternatively, the
components of the processing device 110 may be one or more
separate integrated circuits and/or discrete components. In
one embodiment, the processing device 110 may be a Pro-
grammable System on a Chip (PSoC™) processing device,
developed by Cypress Semiconductor Corporation, San Jose,
Calif. Alternatively, the processing device 110 may be one or
more other processing devices known by those of ordinary
skill in the art, such as a microprocessor or central processing
unit, a controller, special-purpose processor, digital signal
processor (DSP), an application specific integrated circuit
(ASIC), a field programmable gate array (FPGA), or other
programmable device. In an alternative embodiment, for
example, the processing device 110 may be a network pro-
cessor having multiple processors including a core unit and
multiple micro-engines. Additionally, the processing device
110 may include any combination of general-purpose pro-
cessing device(s) and special-purpose processing device(s).

In one embodiment, the electronic system 100 is imple-
mented in a device that includes the touch-sensing surface
116 as a user input device, such as handheld electronics,
portable telephones, cellular telephones, notebook comput-
ers, personal computers, personal data assistants (PDAs),
kiosks, keyboards, televisions, remote controls, monitors,
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handheld multi-media devices, handheld video players, gam-
ing devices, control panels of a household or industrial appli-
ances, or other computer peripheral or input devices. Alter-
natively, the electronic system 100 may be used in other types
of devices. It should be noted that the components of elec-
tronic system 100 may include all the components described
above. Alternatively, electronic system 100 may include only
some of the components described above, or include addi-
tional components not listed herein.

FIG. 2 is a block diagram illustrating one embodiment of
sensor array 121 composed of orthogonal electrodes and a
capacitance sensor 101 that converts changes in measured
capacitances to coordinates indicating the presence and loca-
tion of touch. In one embodiment, the capacitance sensor 101
may measure mutual capacitances for intersections between
the transmit and receive electrodes in the sensor array 121.
The touch coordinates are calculated based on changes in the
measured capacitances relative to the capacitances of the
same touch sensor array 121 in an un-touched state. In one
embodiment, sensor array 121 and capacitance sensor 101 are
implemented in a system such as electronic system 100. Sen-
sor array 121 includes a matrix 225 of NxM electrodes (N
receive electrodes and M transmit electrodes), which further
includes transmit (TX) electrode 222 and receive (RX) elec-
trode 223. Each of the electrodes in matrix 225 is connected
with capacitance sensing circuit 101 through demultiplexer
212 and multiplexer 213.

Capacitance sensor 101 includes multiplexer control 211,
demultiplexer 212, multiplexer 213, clock generator 214, sig-
nal generator 215, demodulation circuit 216, and analog to
digital converter (ADC) 217. ADC 217 is further coupled
with touch coordinate converter 218. Touch coordinate con-
verter 218 may be implemented in the processing logic 102.

The transmit and receive electrodes in the electrode matrix
225 may be arranged so that each of the transmit electrodes
overlap and cross each of the receive electrodes such as to
form an array of intersections, while maintaining galvanic
isolation from each other. Thus, each transmit electrode may
be capacitively coupled with each of the receive electrodes.
For example, transmit electrode 222 is capacitively coupled
with receive electrode 223 at the point where transmit elec-
trode 222 and receive electrode 223 overlap.

Clock generator 214 supplies a clock signal to signal gen-
erator 215, which produces a TX signal 224 to be supplied to
the transmit electrodes of touch sensor 121. In one embodi-
ment, the signal generator 215 includes a set of switches that
operate according to the clock signal from clock generator
214. The switches may generate a TX signal 224 by periodi-
cally connecting the output of signal generator 215 to a first
voltage and then to a second voltage, wherein said first and
second voltages are different.

The output of signal generator 215 is connected with
demultiplexer 212, which allows the TX signal 224 to be
applied to any of the M transmit electrodes of sensor array
121. In one embodiment, multiplexer control 211 controls
demultiplexer 212 so that the TX signal 224 is applied to each
transmit electrode 222 in a controlled sequence. Demulti-
plexer 212 may also be used to ground, float, or connect an
alternate signal to the other transmit electrodes to which the
TX signal 224 is not currently being applied. In an alternate
embodiment the TX signal 224 may be presented in a true
form to a subset of the transmit electrodes 222 and in comple-
ment form to a second subset of the transmit electrodes 222,
wherein there is no overlap in members of the first and second
subset of transmit electrodes 222.

Because of the capacitive coupling between the transmit
and receive electrodes, the TX signal 224 applied to each
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transmit electrode induces a current within each of the receive
electrodes. For instance, when the TX signal 224 is applied to
transmit electrode 222 through demultiplexer 212, the TX
signal 224 induces an RX signal 227 on the receive electrodes
in matrix 225. The RX signal 227 on each of the receive
electrodes can then be measured in sequence by using multi-
plexer 213 to connect each of the N receive electrodes to
demodulation circuit 216 in sequence.

The mutual capacitance associated with the intersections
of'all TX electrodes and RX electrodes can be measured by
selecting every available combination of TX electrode and an
RX electrode using demultiplexer 212 and multiplexer 213.
To improve performance, multiplexer 213 may also be seg-
mented to allow more than one of the receive electrodes in
matrix 225 to be routed to additional demodulation circuits
216. In an optimized configuration, wherein there is a 1-to-1
correspondence of instances of demodulation circuit 216 with
receive electrodes, multiplexer 213 may not be present in the
system.

When a conductive object, such as a finger, approaches the
electrode matrix 225, the object causes a decrease in the
measured mutual capacitance between only some of the elec-
trodes. For example, if a finger is placed near the intersection
of transmit electrode 222 and receive electrode 223, the pres-
ence of the finger will decrease the charge coupled between
electrodes 222 and 223. Thus, the location of the finger on the
touchpad can be determined by identifying the one or more
receive electrodes having a decrease in measured mutual
capacitance in addition to identifying the transmit electrode
to which the TX signal 224 was applied at the time the
decrease in capacitance was measured on the one or more
receive electrodes.

By determining changes in the mutual capacitances asso-
ciated with each intersection of electrodes in the matrix 225,
the presence and locations of one or more conductive objects
may be determined. The determination may be sequential, in
parallel, or may occur more frequently at commonly used
electrodes.

In alternative embodiments, other methods for detecting
the presence of a finger or other conductive object may be
used where the finger or conductive object causes an increase
in measured capacitance at one or more electrodes, which
may be arranged in a grid or other pattern. For example, a
finger placed near an electrode of a capacitive sensor may
introduce an additional capacitance to ground that increases
the total capacitance between the electrode and ground. The
location of the finger can be determined based on the loca-
tions of one or more electrodes at which a change in measured
capacitance is detected, and the associated magnitude of
capacitance change at each respective electrode.

The induced current signal 227 is integrated by demodu-
lation circuit 216. The rectified current output by demodula-
tion circuit 216 can then be filtered and converted to a digital
code by ADC 217.

A series of such digital codes measured from adjacent
sensor intersections, when compared to or offset by the asso-
ciated codes of these same sensors in an un-touched state,
may be converted to touch coordinates indicating a position
of an input on touch sensor array 121 by touch coordinate
converter 218. The touch coordinates may then be used to
detect gestures or perform other functions by the processing
logic 102.

FIG. 3 illustrates an embodiment of a capacitive touch-
sensing system 300 that includes a capacitive sensor array
320. Capacitive sensor array 320 includes a plurality of row
electrodes 331-340 and a plurality of column electrodes 341-
348. The row and column electrodes 331-348 are connected
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to a processing device 310, which may include the function-
ality of capacitance sensor 101, as illustrated in FIG. 2. In one
embodiment, the processing device 310 may perform mutual
capacitance measurement scans of the capacitive sensor array
320 to measure a mutual capacitance value associated with
each of the intersections between a row electrode and a col-
umn electrode in the sensor array 320. The measured capaci-
tances may be further processed to determine centroid loca-
tions of one or more contacts of conductive objects proximate
to the capacitive sensor array 320.

In one embodiment, the processing device 310 is con-
nected to a host 150 which may receive the measured capaci-
tances or calculated centroid locations from the processing
device 310.

The sensor array 320 illustrated in FIG. 3 includes sensor
electrodes arranged to create a pattern of interconnected dia-
mond shapes. Specifically, the sensor electrodes 331-348 of
sensor array 320 form a single solid diamond (SSD) pattern.
In one embodiment, each intersection between a row elec-
trode and a column electrode defines a unit cell. Each point
within the unit cell is closer to the associated intersection than
to any other intersection. For example, unit cell 350 contains
the points that are closest to the intersection between row
electrode 334 and column electrode 346.

In one embodiment, a capacitive touch-sensing system
may collect data from the entire touch-sensing surface by
performing a scan to measure capacitances of the unit cells
that comprise the touch-sensing surface, then process the data
serially or in parallel with a subsequent scan. For example,
one system that processes data serially may collect raw
capacitance data from each unit cell of the entire touch-
sensing surface, and filter the raw data. Based on the filtered
raw data, the system may determine local maxima (corre-
sponding to local maximum changes in capacitance) to cal-
culate positions of fingers or other conductive objects, then
perform post processing of the resolved positions to report
locations of the conductive objects, or to perform other func-
tions such as motion tracking or gesture recognition.

In one embodiment, a touch-sensing system may be con-
figured to perform one or both of self-capacitance sensing and
mutual capacitance sensing. One embodiment of a capacitive
touch-sensing system that is configured to perform self-ca-
pacitance sensing may, in sequence or in parallel, measure the
self capacitance of each row and column sensor electrode of
the touch-sensing surface, such that the total number of sense
operations is N+M, for a capacitive sensor array having N
rows and M columns. In one embodiment, the touch-sensing
system may be capable of connecting individual sensor elec-
trodes together to be sensed in parallel with a single opera-
tion. For example, multiple row and or column sensor elec-
trodes may be coupled together and sensed in a single
operation to determine whether a conductive object is touch-
ing or near the touch-sensing surface. In an alternate embodi-
ment, the touch-sensing system may be capable of connecting
each row sensor electrode to it is own sensor circuit such that
all row electrodes may be sensed in parallel with a single
operation. The touch-sensing system may also be capable of
connecting each column sensor electrode to its own sensor
circuit such that all column electrodes may be sensed in
parallel with a single operation. The touch-sensing system
may also be capable of connecting all row and column elec-
trodes to their own sensor circuits, such that all row and
column electrodes may be sensed in parallel with a single
operation.

In one embodiment, a touch-sensing system may perform
mutual capacitance sensing of the touch-sensing surface by
individually sensing each intersection between a row elec-
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trode and a column sensor electrode. Thus, a total number of
sense operations for a capacitive touch sensor having X rows
and Y columns is XxY. In one embodiment, performing a
mutual capacitance measurement of a unit cell formed at the
intersection of a row electrode and a column electrode
includes applying a signal (TX) to one electrode and measur-
ing characteristics of the signal on another electrode resulting
from the capacitive coupling between the electrodes.

In one embodiment, multiple capacitance sensing circuits
may be used in parallel to measure a signal coupled to mul-
tiple column electrodes simultaneously, from a signal applied
to one or more row electrodes. In one embodiment, for a
capacitive sensor array having X rows, Y columns, and N
columns that can be sensed simultaneously, the number of
mutual capacitance sensing operations is the smallest whole
number greater than or equal to XxY/N.

The power consumption of a self-capacitance or mutual
capacitance touch-sensing system may be decreased by lim-
iting scans to a portion of the touch-sensing surface. Limiting
the scan may further result in higher immunity from noise, as
well as higher accuracy, response time, and refresh rate when
tracking a conductive object.

As an example, a touch-sensing system may have X=16
rows, Y=24 columns, and N=8 columns that can be sensed
simultaneously. Such a touch-sensing system, when config-
ured to measure an 8x8 block of unit cells as a search window,
may track a presence and location of a conductive object
using 8 sensing operations for each update of the touch loca-
tions. The same system performing a scan of the entire touch-
sensing surface would use 48 sensing operations per update.
Thus, in this particular example, local scanning results in a 6x
improvement in scan time and similar reduction in power to
perform the scan.

Inone embodiment, each update of the touch locations may
include a sensing portion and a non-sensing portion. The
sensing portion may include measurement of capacitance
associated with intersections between sensor electrodes,
while the non-sensing portion may include calculation of
touch locations based on the capacitance measurements and
reporting of the calculated touch locations to a host device.

In one embodiment, a 5.5 inch diagonal panel composed of
>500 unit cells, using a 7x7 search window may reduce
scanning time by a factor of >10, as compared to a full scan.
This reduced scanning time may further affect many of the
critical parameters of a touchscreen system, such as power
consumption, signal to noise ratio, refresh rate, and accuracy.

FIG. 4 illustrates a 6x6 grid of unit cells representing a
portion of a capacitive sensor array, according to an embodi-
ment. The illustrated grid includes unit cells that are affected
by a contact or proximity of a conductive object. In one
embodiment, each of the unit cells, such as unit cell 404,
corresponds to an intersection between a row and column
electrode in a capacitive sensor array 121. In FIG. 4, the
shading of each unit cell indicates a magnitude of a change in
mutual capacitance for that unit cell resulting from the pres-
ence of a conductive object at a contact location 401, with
darker shading indicating a greater change in mutual capaci-
tance. In one embodiment, the location of contact 401 is
determined by a centroid 402 calculated from an array popu-
lated with the sensed capacitance values of each of the inter-
sections within the local search window. In one embodiment,
the contact location’s centroid 402 is calculated using inter-
polation between all or a subset of the measured capacitance
values in each of'the X and Y directions, and by using most or
all of the readings which exceed a noise threshold. By this
method, the center of a contact by or presence of a conductive
object can be calculated with much finer resolution than the
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pitch of electrodes used to make the sensor array. In another
embodiment, only a subset of the measured capacitance val-
ues is used for the calculation.

In one embodiment, a size of a search window over which
a touch-sensing system may perform a local scan may be
determined based on an expected maximum velocity of a
finger or other conductive object to be tracked by the touch-
sensing system. For example, a capacitive sensor array may
have an electrode pitch of 5 mm and may be scanned at a rate
of 100 Hz. For a touch-sensing application, a finger on a
touchscreen may move as fast as 1 meter per second over the
sensor array, with speeds much faster than a few hundred
millimeters per second being relatively uncommon.

In such a touch-sensing system, it will be unusual for a
finger to have moved more than a few millimeters during a
time interval between scans. Thus, the search window may be
sized to include substantially all of the predicted locations of
the conductive object, given the expected rate of travel of the
conductive object. For example, the local scan may include all
or a subset of the intersections within an 8x8 area of unit cells,
which would be large enough to accommodate the maximum
expected travel distance for the finger or other conductive
object of a few millimeters per scan interval if the local scan
window were centered on the centroid of the resolved touch in
the previous scan.

In one embodiment, a touch-sensing system may deter-
mine a location of the search window over which to perform
a local scan based on a predicted location of a conductive
object, such as a finger. For example, the system may predict
a location where a finger is expected to be during the time of
a subsequent scan and perform a local scan including inter-
sections of'sensor electrodes around the predicted location. In
one embodiment, the system identifies a search window,
which is an area including intersections to be scanned during
the local scan. In one embodiment, the search window
includes the predicted location of the conductive object. In
one embodiment the predicted location of the conductive
object is the calculated location of the conductive object from
the previous scan.

In one embodiment, the touch-sensing system uses the
location of the conductive object, as determined by an initial
scan, as the predicted location of the conductive object for a
subsequent local scan. In one embodiment, the touch-sensing
system may also account for the velocity or acceleration of a
conductive object that is in motion. For example, the system
may determine the last known position, velocity, and accel-
eration of the conductive object based on previously resolved
positions of the conductive object in order to calculate a
predicted location for the conductive object at a time when the
subsequent local scan is scheduled to be performed.

In one embodiment, a process for locating a contact using
a local scan begins by calculating an expected contact loca-
tion. Inone embodiment, a touch-sensing system may operate
based on assuming that the contact location of a conductive
object proximate to the touch-sensing surface is moving suf-
ficiently slowly that the last known location of the contact can
be used to approximate the predicted location of the contact
for a subsequent scan.

In one embodiment, the suitability of using the last known
contact location as a predicted location may depend on factors
including the scanning rate of the touch-sensing system, the
size of the sensor electrodes, the expected maximum velocity
of the conductive object, and the size of the search window.

For example, a touch-sensing panel that is scanned at 200
Hz with a unit cell size of 5x5 mm, would still be able to locate
a conductive object, such as a finger, moving at 200 Hzx5
mm=1 m/s using a search window that includes a border that
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is at least one additional “buffer” unit cell wide on all sides of
the minimum area of unit cells used by the system for deter-
mining the centroid location of the contact. For example, if
the touch-sensing system uses minimum of a 6x6 grid of unit
cells to calculate the centroid location of the conductive
object, the size of the search window would be 8x8 unit cells.

In an alternative embodiment, the predicted location of the
conductive object may be based on previously determined
locations of the contact location. In one embodiment, the
previous locations of the contact may be used to calculate a
velocity and acceleration of the contact. Calculation of the
predicted contact location based on velocity may increase the
accuracy of the prediction, particularly for a contact moving
at a substantially constant rate. Compensating for accelera-
tion of the moving contact may further increase the prediction
accuracy for contacts that are not moving at a constant veloc-
ity.

FIG. 5 illustrates an area of a touch-sensing surface 500,
according to an embodiment. As illustrated in FIG. 5, a search
window 501 may cover a portion of the touch-sensing surface
500, and may be positioned such that the search window 501
contains the predicted location 502 for the conductive object.
In one embodiment, the search window 501 may be centered
to surround the predicted location 502.

FIG. 6A illustrates a search window 611 ofa touch-sensing
surface 600, according to an embodiment. In one embodi-
ment, one or more preceding touch contacts have been
resolved to allow prediction of a contact location 610. In one
embodiment, once the touch-sensing system has predicted a
location 610, the touch-sensing system may perform self-
capacitance or mutual capacitance measurements on sensor
electrodes intersecting with other sensor electrodes within the
search window 611. In one embodiment, the predicted con-
tact location 610 is at the center of search window 611.

In one embodiment, the touch-sensing system scans the
intersections within the search window 611 by performing
capacitance measurements using the rows 612 and columns
613, the result of such measurements are used to resolve a
location of the conductive object within the search window
611. In one embodiment, the capacitance measurements may
be mutual capacitance measurements between individual row
and column sensor electrodes. Alternatively, the touch-sens-
ing system may perform a self-capacitance scan of each of the
row electrodes 612 and column electrodes 613 to determine a
detected location of the conductive object within the search
window 611. For example, a self-capacitance scan of the row
and column electrodes spanning local scan search window
400 may result in a self-capacitance profile including column
capacitances 405 and row capacitances 406.

Capacitance measurements collected from scanning the
search window 611 may be analyzed to determine whether a
presence of a finger or other conductive object has been
detected within the search area 611. In one embodiment, if a
contact is detected wholly within the search area 611, the
touch-sensing system may proceed with resolving a location
of the conductive object based on the capacitance measure-
ments. In one embodiment, a location can be resolved based
on a minimum number of capacitance measurements. Thus, a
location of a conductive object that is completely within the
search window is resolvable using only capacitance measure-
ments of unit cells formed of sensor electrodes that intersect
within the search window. In contrast, a contact that is only
partially within the search window may be resolved using the
capacitance measurements of sensor electrodes intersecting
within the search window 611, in addition to capacitance
measurements of sensor electrodes intersecting outside the
search window 611. In one embodiment, a contact may be
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detected to be only partially (i.e., not wholly) within the
search window if the highest (or lowest) capacitance value in
either the X or Y direction is within a predetermined number
of intersections of the edge of the search window. In another
embodiment, a contact may be determined to be only partially
within the search window if the measured capacitance value
at one or more (or another predetermined number) of the
intersections forming the boundary of the search window
differs more than a predetermined amount from a reference
level; this predetermined level may be an absolute capaci-
tance value, or may be a value relative to the highest or lowest
capacitance value measured within the search window.

For example, a contact at location 610 may be completely
within the search window 611, while a contact at location 620
may be partially within the search window 611. Notably,
although the contact location 620 is centered outside of the
search window 611, a contact at location 620 may still cause
changes in capacitance measurable at some intersections
inside the search window 611.

Inresponse to failing to detect that the contact location is at
least partially within the search window 611, the touch-sens-
ing system may expand the size of the search window 611 by
scanning intersections associated with additional sensor elec-
trodes, such as columns 623 and rows 622. Thus, the initial
search window 611 may be expanded to the extended search
window 621, which includes the intersections between each
of'a setof rows, including rows 612 and rows 622, and each of
a set of columns, including columns 613 and 623. Note that in
some embodiments it may not be possible to distinguish
between a touch having moved outside the search window
and the conductive object having moved away from proxim-
ity to the touch-sensing surface. However, in one embodiment
the system responds in the same way—by expanding the size
of the search window. In one embodiment the search window
may be increased to cover the entire touch-sensing surface. If
no touch is detected within the expanded search window then
it may be inferred that the conductive object is no longer
proximate to the sensing surface.

For example, a finger may be proximate to the touch-
sensing surface 600 at a touch location 620 even after the
touch-sensing system has predicted a location 610 based on
previously determined locations of the finger. In one embodi-
ment, this situation may arise when the finger is removed and
replaced on the touch-panel or has moved faster than can be
accommodated by the prediction method.

In one embodiment, the touch-sensing system may extend
the search window 611 by the same number of intersections in
each direction. For example, an extended search window may
include unit cells within the initial search window and a
boundary of unit cells, one or more unit cells wide, on each of
the four sides of the initial search window, while not extend-
ing the search window beyond the limits of physically present
sensor electrodes. Alternatively, the touch-sensing system
may extend the search window 611 in a direction depending
on the capacitances measured from within the search window
611, or a predicted direction of travel of the contact.

In one embodiment, the touch-sensing system may extend
the initial search window by scanning additional intersections
on the same side as the largest magnitude of change in capaci-
tance measured within the initial search window. This process
accommodates situations where a contact at location 620 is
partially within the initial search window 611, or at least
causes measurable changes in capacitance at the intersections
within the search window 611. In one embodiment, the search
window 611 may be extended until a minimum sufficient
amount of capacitance data for resolving the contact location
is collected.
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In one embodiment, the touch-sensing system may extend
the search window 611 in the same direction as a direction of
travel of the contact. For example, the touch-sensing system
may extend the search window 611 upwards and to the left
(with reference to FIG. 6A) to find the position of a contact
that is traveling from location 610 to location 620, in response
to determining that the contact influenced the capacitance of
intersections not completely within the search window 611.

In one embodiment, if a touch-sensing system is not able to
detect a presence of a contact based on a local scan limited to
a search window, the touch-sensing system may extend the
search to scan the entire capacitive sensor array. Thus, the
touch-sensing system may be able to locate the contact even
if the contact travels completely outside the search window,
such that the conductive object does not affect any capaci-
tance measurements within the search window 611.

In one embodiment, a touch-sensing system implementing
the local scan method may also be configured to detect the
presence of additional conductive objects while tracking an
initial contact using the local scan method, to allow local
scanning to be used with multi-touch applications. There are
several methods that can be used to detect new contacts,
including detecting one or more secondary capacitance peaks
within an existing local scan window, detecting a change in
the total self-capacitance of the capacitive sensor array,
detecting a change in the self capacitance of sensor electrodes
not already measured as part of the local scan window, or
scanning all or part of the sensor array using self or mutual
capacitance sensing methods.

In one embodiment, a touch-sensing system may perform a
scan of the remaining area of the touch-sensing surface, in
addition to the area of the local scan, in order to detect the
presence of additional conductive objects, such as additional
fingers proximate to the touch-sensing surface.

In one embodiment, a quick detection of a first new contact
at the touch-sensing surface may be performed using a single
self-capacitance measurement of the entire sensor, which
may be performed in a single touch detection and resolution
cycle. In one embodiment, when there is no touch location
currently being tracked, the detecting the presence of a new
touch may include a self-capacitance sensing of sensor elec-
trodes of only one axis. Once a touch is detected, then that
touch can be localized and verified to be a single touch by a
self-capacitance measurement of the second axis. If more
than one touch is present, then one or more fine scans using
mutual capacitance may be used to resolve the locations of the
individual touches. In one embodiment where the self capaci-
tance measurements are of low spatial resolution or low sig-
nal-to-noise resolution to only perform reliable detection of
touch presence, resolution of touch location may always be
performed using mutual capacitance fine scans.

In one embodiment, the sensor array may be sensed in
sections to detect a new contact by electrically coupling mul-
tiple sensor electrodes to make up such sections. In one
embodiment, the sections may be adjacent, but non-overlap-
ping. Alternatively, a touch-sensing system may sense three
overlapping sections of a capacitive sensor array, with each
section covering approximately half the area of the entire
capacitive sensor array. In one embodiment, a touch-sensing
system with overlapping sections may more easily detect the
presence of a conductive object in an overlapping area, par-
ticularly when the change in measured capacitance caused by
the conductive object is relatively small. Specifically, when
measuring large areas, a change in capacitance caused by a
single finger may be small, such that if the finger is located at
a boundary between two non-overlapping sections, the
change in measured capacitance may be insufficient to be
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detected as a presence. For systems having a capacitance
sensor with multiple sensing channels, the self-capacitance of
all row, all column, or all row and column sense electrodes
can all be measured in parallel, wherein each sense electrode
may be connected to a separate sensing channel.

In one embodiment, the touch-sensing system may detect
the presence of additional contacts by scanning all or part of
the capacitive sensor array using mutual-capacitance sensing
methods. Depending on the ratio of sensor pitch to a mini-
mum expected contact size, the intersections of the sensor
electrodes may be sensed according to various patterns, such
as striped or checkerboard patterns. In one embodiment, the
touch-sensing system may sense intersections associated
with alternate rows and columns to detect the presence of a
contact. Alternatively, a touch-sensing system may sense
intersections associated with every third row and column to
detect the contact. In an alternate embodiment, those inter-
sections not measured in a first sensing of the touch-sensing
surface when looking for touch presence, are measured in a
subsequent sensing of the surface, such that over time all
intersections are measured. For example, if every other inter-
section of the touch-sensing surface comprising a checker-
board pattern is measured for touch presence in a first scan of
the touch-sensing surface, the remaining intersections, not
measured in the first scan, may be measured in the following
scan.

For example, FIG. 6B illustrates an embodiment of a
touch-sensing surface 650 including a 16x24 sensor array
with N=8. A touch-sensing system may detect a contact at the
touch-sensing surface 650 by performing a self or mutual
capacitance scan that includes scanning one of every three
rows (rows 652) in conjunction with alternating columns
(columns 651). Mutual capacitance measurements are thus
performed for the unit cells (including unit cells 653) at the
intersections of the scanned rows 652 and columns 651. Alter-
natively, the touch-sensing system may apply a TX signal to
multiple rows simultaneously. In one embodiment, these
rows may be interleaved with rows associated with intersec-
tions that are not sensed.

In one embodiment, a scan for new contacts may be per-
formed at a lower rate than a tracking of a known contact
using a local scan. In one embodiment, a scan of the entire
sensor array to detect a new additional contact may be per-
formed over several local scan periods. For example, a touch-
sensing system may perform a self-capacitance scan of each
of three sections, where one section is scanned for new con-
tacts after every local scan for tracking a known contact. In
such a case, with a 200 Hz update rate for local scan tracking,
the typical “touch latency” for detecting a new contact would
be approximately 15 ms to 20 ms.

In one embodiment where new contacts are detected using
mutual capacitance measurements, the mutual capacitance
scan for new contacts may be interleaved between one or
more local scans. For example, if 12 mutual capacitance
sensing operations (corresponding to alternating rows and
columns and N=8 channels and measuring 48 independent
intersections) are used to find new contacts over the full area
of the touch-sensing surface, then three rows may be sensed
after each local scan, resulting in a 20 ms typical latency for
detecting new contacts. Note that when performing these new
contact scans, in one embodiment the area already covered by
a local scan may be excluded since it has already been mea-
sured.

FIG. 6C illustrates an embodiment of a touch-sensing sur-
face 670 with a 16x24 capacitive sensor array and N=8 chan-
nels, for which a set 671 of 8 columns of the 16 columns can
be sensed simultaneously, with alternate rows being driven
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for a total of 8x12=96 capacitance measurements. In one
embodiment, some of the rows may be driven with a true TX
signal, while others may be driven with a complement TX
signal. The 12 rows being driven may be driven in four sets of
3, such that the first set 672, second set 673, third set 674, and
fourth set 675 of 3 row electrodes are driven in sequence after
a first, second, third, and fourth local scan, respectively. In
one embodiment, intersections corresponding to all 3 of the
interleaved rows in each set 672-675 may be sensed together
by driving all 3 rows simultaneously, thus reducing the new
touch detection operation to a single mutual capacitance
operation for each local scan.

In one embodiment, the local scan is used only when track-
ing the location of a single conductive object in contact with
or proximate to the touch-sensing surface. Alternatively, the
local scan may be used to track a number of proximate con-
ductive objects, such as finger touches.

In one embodiment, the system may use the local scan
method for tracking a limited number of touches in a system
that is capable of tracking more than the limited number of
contacts. For example, a touch-sensing system capable of
tracking up to ten contacts may use the local scan mode when
tracking up to two simultaneous contacts at the touch-sensing
surface, and may switch to a different mode for tracking more
than two contacts. In this example, two separate search win-
dows may be used when tracking two fingers. In one embodi-
ment, if the two search windows overlap, a single larger
window may be used for as long as the two centroids are
within a predetermined distance of each other.

FIG. 7 illustrates an embodiment of a process 700 for
scanning a touch-sensing surface. In one embodiment, the
scanning process 700 may be implemented in a touch-sensing
system such as the system illustrated in FIG. 2. In one
embodiment, the touch-sensing system may be capable of
performing both mutual capacitance and self-capacitance
measurements. In one embodiment, the process 700 com-
prises operations that may be performed in either a processing
device such as processing device 110, or in a host such as host
150. Alternatively, the operations of process 700 may be
divided between a processing device and a host.

In one embodiment, scanning process 700 begins at block
701, prior to which time no contacts are detected to be present
at the touch-sensing surface. At block 701, the touch-sensing
system may perform an initial scan of the touch-sensing sur-
face to detect the presence of a new contact at the touch-
sensing surface. In one embodiment, the scan at block 701
may be a self-capacitance scan of electrodes comprising one
axis of the touch-sensing surface, such as touch-sensing sur-
face 600, as illustrated in FIG. 6 A. Ifthe self-capacitance scan
of one axis indicates a contact is present, the alternate axis is
also scanned to allow prediction of a touch location along
both axes. In one embodiment, a self-capacitance scan that
indicates more than one touch may cause the system to switch
to a mutual capacitance scanning method to determine the
number of touches. In an alternative embodiment, the initial
scan may be a mutual capacitance scan of all the intersections,
or a subset of intersections of the sensor electrodes. From
block 701, the process 700 continues at block 703.

At block 703, if the presence of a new contact was not
detected by the initial scan of block 701, the process 700
continues back to block 701 after a timeout at block 707.
Thus, the initial scan for a new contact repeats periodically
until a new contact is detected. If, at block 703, a new contact
was detected by the initial scan of block 701, the process 700
continues at block 705.
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Atblock 705, the system may predicta location of a contact
based on the initial scan performed at block 701. From block
705, the process 700 continues at block 709.

At block 709, the touch-sensing system may perform a
local scan to collect raw capacitance data from sensor unit
cells around the predicted contact location. In one embodi-
ment, if the contact is a new contact as identified at block 703,
then the predicted contact location may be taken as an
approximate location of the new contact as determined by
initial scan performed at block 701. Thus, the local scan of
block 709 may be performed within a search window sur-
rounding an approximate location of the new contact as deter-
mined by the full panel or initial scan of block 701. In one
embodiment, the search window may be centered around the
predicted contact location. For example, search window 611
of FIG. 6A is centered around predicted contact location 610.
In one embodiment, the local scan is performed on unit cells
within a search window, such as search window 501 or 611, as
illustrated in FIGS. 5 and 6A, respectively. From block 709,
the process 700 continues at block 711.

At block 711, the system determines whether the raw
capacitance data represents a whole contact. In one embodi-
ment, a centroid location for a whole contact can be deter-
mined based on only the capacitance values measured from
within the search window. In contrast, a centroid location for
a partial contact may be determined based on capacitance
values measured from within the search window in addition
to capacitance values measured from outside the search win-
dow. If the touch-sensing system determines that the capaci-
tance data does not represent a whole contact, the process 700
continues at block 713. If the touch-sensing system instead
identifies a whole contact, or that a partial contact is found
near the perimeter area of the touch sensing surface wherein
expanding the search window will not provide additional
capacitance data, the process 700 continues at block 717.

Atblock 713, the system determines whether the full panel
has been scanned. If, at block 713, the full panel has been
scanned, then a whole contact or partial contact along the
perimeter was not found within the bounds of'the entire touch
sensing panel, and the panel no longer has a touch or contact
present. Accordingly, the process 700 continues back to block
707 and 701, where a new initial scan is performed after a
timeout to look for a new touch or contact to occur. If, at block
713, the full panel has not been scanned, then the system
continues at block 715.

At block 715, the system may expand the search area, and
a local scan may be performed on the extended search win-
dow at block 709 to obtain additional capacitance data for
locating a whole contact, or further resolving a location of any
partial contact that may have been found by the scan at block
709. For example, the touch-sensing system may scan unit
cells in an extended search window, such as extended search
window 621, as illustrated in FIG. 6A. Thus, the blocks 709-
715 may be repeated until at block 711, either a whole contact
is found, or the entire panel is scanned without finding a
whole contact or partial contact along the perimeter of the
panel. Ifa whole contact or partial contact along the perimeter
of'the panel is not found after scanning the full panel, then the
process 700 continues from block 713 to block 701 after a
timeout 707. If a whole contact is found, then the process 700
continues from block 711 to block 717.

At block 717, the touch-sensing system calculates a
resolved contact location of the whole contact or partial con-
tactalong the perimeter of the panel, based on the capacitance
data from block 709. The touch-sensing system may report
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the location as touch coordinates to a host computer, such as
host 150 of FIG. 1. From block 717, the process 700 continues
to block 719.

At block 719, the touch-sensing system predicts a contact
location. In one embodiment, when only initial locations have
been determined for one or more contacts, the predicted con-
tact location may be the same as the resolved contact loca-
tions, as calculated at block 717.

In one embodiment, the predicted contact location may be
based on a previous scan, such as the scan at block 701, 709,
or 723, where the predicted contact location is associated with
a time of a subsequent scan. In one embodiment, the predic-
tion of the contact location may be based on one or more
previously determined locations of the same contact. For
example, the touch-sensing system may determine a velocity
or acceleration for the contact based on previous locations of
the contact, and may determine a predicted location that
accounts for the velocity or acceleration. Alternatively, the
touch-sensing system may use a last known location of the
contact, such as the contact location determined at block 717,
as the predicted location of the contact.

In one embodiment, the next predicted location following
the resolution of a first touch location may be centered on the
first touch location. Once the second touch location is
resolved, the two touch locations and their associated time of
measurement may be mathematically evaluated to provide a
velocity vector that may be used to predict a location for the
third scan. Once three resolved touch locations are available,
then an acceleration of the conductive object can be deter-
mined. In one embodiment, the previous one, two, or three
resolved locations of the touch can then be used for a subse-
quent prediction depending on the velocity and acceleration.
In one embodiment, the previously resolved locations of the
touch may also be used to shape the area of the fine scan
window. If the acceleration is 0, then the last two points may
be used. Ifthe velocity is zero, then the last point may be used
in the prediction. The predicted location of touch determined
in block 719 may be used for a local scan performed as
provided at block 709. From block 719, the process 700
continues at block 721.

In one embodiment, either after or before block 719 there
will be some delay to control the scanning rate of the touch-
sensing system. For example, the system may include a timer
(e.g., a 5 ms timer for a 200 Hz system), such that before or
after block 719, the system will wait until the timer indicates
that 5 ms has passed since the start of the previous scan. Block
721 represents a timeout occurring after block 719, which
may be implemented by such a timer.

At block 721, when the timeout has elapsed, the process
700 continues at block 723. Accordingly, in one embodiment,
the timeout determines an interval for periodically scanning
for new contacts, as provided at block 723.

At block 723, a touch-sensing system may perform a scan
of a touch-sensing surface to detect a new additional contact
at the touch-sensing surface. In one embodiment, the scan
may be a mutual capacitance scan of a touch-sensing surface,
such as touch-sensing surface 600, as illustrated in FIG. 6A.
In one embodiment, the scan may be a self-capacitance scan
of a touch sensing surface. In one embodiment, the scan at
block 723 may cover the entire sensing area of a touch-
sensing surface to detect a new contact anywhere in the sens-
ing area. From block 723, the process 700 continues at block
725.

In one embodiment, the number of contacts at the touch-
sensing surface may change because of the addition of an
initial contact (as detected by the scan at block 701), or the
introduction of'a new additional contact (as detected by a scan
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according to block 723) to a set of contacts already detected at
the touch-sensing surface. In one embodiment, if the number
of contacts has increased, the touch-sensing system locates
the one or more new contacts by performing a full self-
capacitance scan (both axes, for a single contact) or mutual
capacitance scan (for multiple contacts) of the entire touch-
sensing panel.

Atblock 725, based on the scan performed at block 723, the
touch-sensing system determines whether the number of con-
tacts at the touch-sensing surface has changed since the pre-
vious scan. In one embodiment, the number of contacts at
block 725 may change because a contact was added to or
removed from the touch-sensing surface. From block 725, if
the number of contacts has not changed, then the process 700
continues atblock 709, where the system may perform a local
scan based on the predicted position from block 719. Other-
wise, if the number of contacts has changed, then the process
700 continues at block 705, where the system predicts a
contact location.

In one embodiment, the process 700 thus repeats while the
touch-sensing system is in operation to continuously track the
locations of one or more conductive objects on or proximate
to the touch-sensing surface.

In one embodiment, the local scanning and additional con-
tact detection methods are not limited to detection and track-
ing of fingers, but may be used to track other objects such as
active or passive styli, or may be used to detect and track
conductive objects in proximity to, but not necessarily con-
tacting, the touch-sensing surface. In one embodiment, the
local scanning and additional contact detection methods may
also be applicable to non-capacitive touchscreen sensing
methods which use an array of sensing locations.

Embodiments of the present invention, described herein,
include various operations. These operations may be per-
formed by hardware components, software, firmware, or a
combination thereof. As used herein, the term “coupled to”
may mean coupled directly or indirectly through one or more
intervening components. Any of the signals provided over
various buses described herein may be time multiplexed with
other signals and provided over one or more common buses.
Additionally, the interconnection between circuit compo-
nents or blocks may be shown as buses or as single signal
lines. Each of the buses may alternatively be one or more
single signal lines and each of the single signal lines may
alternatively be buses.

Certain embodiments may be implemented as a computer
program product that may include instructions stored on a
computer-readable medium. These instructions may be used
to program a general-purpose or special-purpose processor to
perform the described operations. A computer-readable
medium includes any mechanism for storing or transmitting
information in a form (e.g., software, processing application)
readable by a machine (e.g., a computer). The computer-
readable storage medium may include, but is not limited to,
magnetic storage medium (e.g., floppy diskette); optical stor-
age medium (e.g., CD-ROM); magneto-optical storage
medium; read-only memory (ROM); random-access memory
(RAM); erasable programmable memory (e.g., EPROM and
EEPROM); flash memory, or another type of medium suit-
able for storing electronic instructions.

Additionally, some embodiments may be practiced in dis-
tributed computing environments where the computer-read-
able medium is stored on and/or executed by more than one
computer system. In addition, the information transferred
between computer systems may either be pulled or pushed
across the transmission medium connecting the computer
systems.
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Although the operations of the method(s) herein are shown
and described in a particular order, the order of the operations
of'each method may be altered so that certain operations may
be performed in an inverse order or so that certain operation
may be performed, at least in part, concurrently with other
operations. In another embodiment, instructions or sub-op-
erations of distinct operations may be in an intermittent and/
or alternating manner.

In the foregoing specification, the invention has been
described with reference to specific exemplary embodiments
thereof. It will, however, be evident that various modifica-
tions and changes may be made thereto without departing
from the broader spirit and scope of the invention as set forth
in the appended claims. The specification and drawings are,
accordingly, to be regarded in an illustrative sense rather than
a restrictive sense.

What is claimed is:

1. A device comprising:

a touch-sensing surface comprising a plurality of elec-
trodes;

a capacitance sensing circuit coupled to the plurality of
electrodes to measure changes in capacitance at inter-
sections between pairs of the plurality of electrodes; and

processing logic coupled to the capacitance sensing circuit,
wherein the processing logic is configured for:

based on a previously known location and a determined
direction of travel of a conductive object proximate to
the touch-sensing surface, identifying a predicted loca-
tion of the conductive object;

using the predicted location of the conductive object, iden-
tifying a first search window of the touch-sensing sur-
face comprising a first set of unit cells, wherein the first
search window is less than a full area of the touch-
sensing surface;

performing a first scan of the first search window to detect
changes in capacitance associated with the conductive
object;

in response to performing the first scan and in accordance
with a determination that the changes in capacitance
associated with the conductive object do not satisfy a
first search window capacitance criterion, identifying a
second search window of the touch-sensing surface,
comprising a second set of unit cells, that extends from
the first search window in only a same direction as the
determined direction of travel of the conductive object;
and

performing a second scan of the second search window
with at least one of a reduced scan rate or a reduced
resolution to detect any additional changes in capaci-
tance associated with the conductive object proximate to
the touch-sensing surface within the second search win-
dow.

2. The device of claim 1, wherein the processing logic is
further configured for measuring mutual capacitances of a
plurality of the second set of unit cells within the second
search window in a scanning pattern in which a plurality of
subsets of the second set of unit cells is scanned at different
points in time, and wherein each of the plurality of subsets is
less than a total number of unit cells in the second set of unit
cells.

3. The device of claim 1, wherein the touch-sensing surface
comprises a plurality of electrodes arranged as rows and
columns, and wherein the processing logic is further config-
ured to measure mutual capacitances of a plurality of unit
cells, wherein each of the plurality of unit cells is an intersec-
tion of a pair of one of the rows and one of the columns.
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4. A method comprising,

at a touch-sensitive device including a touch-sensing sur-
face:

based on a previously known location and a determined
direction of travel of a conductive object proximate to
the touch-sensing surface, identifying a predicted loca-
tion of the conductive object;

using the predicted location of the conductive object, iden-
tifying a first search window of the touch-sensing sur-
face comprising a first set of unit cells, wherein the first
search window is less than a full area of the touch-
sensing surface;

performing a first scan of the first search window to detect
changes in capacitance associated with the conductive
object;

in response to performing the first scan and in accordance
with a determination that the changes in capacitance
associated with the conductive object do not satisfy a
first search window capacitance criterion, identifying a
second search window of the touch-sensing surface,
comprising a second set of unit cells, that extends from
the first search window in only a same direction as the
determined direction of travel of the conductive object;
and

performing a second scan of the second search window
with at least one of a reduced scan rate or a reduced
resolution to detect any additional changes in capaci-
tance associated with the conductive object proximate to
the touch-sensing surface within the second search win-
dow.

5. The method of claim 4, wherein performing the second

scan comprises scanning a plurality of the second set of unit
cells within the second search window in a scanning pattern,
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wherein scanning the plurality of unit cells in the scanning
pattern comprises scanning a plurality of subsets of the sec-
ond set of unit cells at different points in time, and wherein
each of the plurality of subsets is less than a total number of
unit cells in the second set of unit cells.

6. The method of claim 4, wherein the touch-sensing sur-
face comprises a plurality of electrodes arranged as rows and
columns, and wherein performing the second scan comprises
measuring mutual capacitances of a plurality of unit cells,
wherein each of the plurality of unit cells is an intersection of
apair of one of the rows and one of the columns, and wherein
measuring the mutual capacitances comprises measuring the
mutual capacitances of the plurality of unit cells in a scanning
pattern in which a first subset of intersections of the plurality
of unit cells is scanned, and wherein the first subset of inter-
sections is less than a total number of unit cells corresponding
to the second search window.

7. The method of claim 4, wherein the first scan is a local
scan and the method further comprises:

performing a set of one or more subsequent local scans to

track the conductive object when the conductive object
is not detected proximate to the touch-sensing surface
based on the second scan; and

after a timeout, performing a third scan of the second

search window with the at least one of the reduced scan
rate or the reduced resolution to detect any additional
conductive objects proximate to the touch-sensing sur-
face within the second search window, wherein perform-
ing the third scan comprises measuring mutual capaci-
tances of intersections within the second search window
not measured in the second scan.
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